Pre-Lecture Note

Option - Definition

Option is a financial agreement giving buyer (of the option) the right (but not the obligation) to buy/sell a specified amount of underlying asset at a specified price on or before a specified date

Compare it to a forward:

A Financial Contract whereby the owner has the obligation to buy/sell a specified amount of underlying at a specified price on a specified date

An option is a security, just like a stock or bond, and constitutes a binding contract with strictly defined terms and properties

Call Option - Example

Say, you have bought a call option of strike 100 with a maturity of 1 month.

What this means is that at the end of month, whatever the price of underlying asset be, the buyer of the call option can BUY the underlying asset for \$100.

Scenario 1: The price of the stock at the end of the month is \$107.5

Scenario 2: The price of the stock at the end of the month is \$97

Put Option - Example

Say, you have bought a put option of strike 100 with a maturity of 1 month.

What this means is that at the end of month whatever the price underlying asset be, the buyer of the option can SELL the underlying asset for \$100.

Scenario 1: The price of the stock at the end of the month is \$107.5

Scenario 2: The price of the stock at the end of the month is \$97

Definitions

Call Option

Gives buyer the right to BUY the underlying

Put Option

Gives buyer the right to SELL the underlying

Strike

Price of the underlying at which the option can be exercised

Expiry Date

The date at which the option can be exercised

Premium

Upfront payment made by the buyer to the seller (writer) of the option

Types of Options

	CALL OPTION	PUT OPTION
B U Y E R	The right (but not the obligation) to buy	The right (but not the obligation) to sell
S E L L E R	The potential obligation to sell	The potential obligation to buy

Types of Options

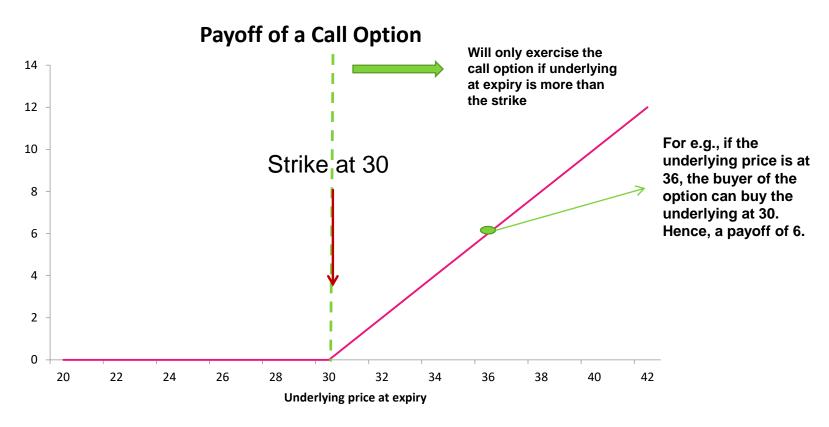
European Options

Option only exercisable on expiry date

American Options

Option exercisable any time before or on expiry

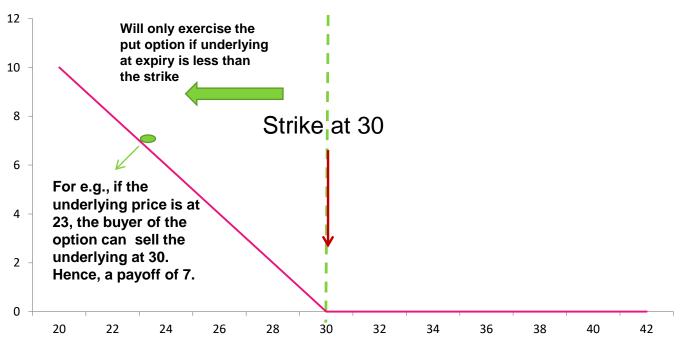
Bermudan Options


Option exercisable on specific dates until expiry

Payoffs – Call Option

Consider a Call Option on XYZ stock with strike = 30, expiry date = 30th April 201X.

At Expiry, the payoff of the call option for the buyer is as shown below:



Payoffs – Put Option

Consider a Put Option on XYZ stock with strike = 30, expiry date = 30th April 201X.

At Expiry, the payoff of the put option for the buyer is as shown below:

Payoff of a Put Option

Terminology: Moneyness

Terminology	Call Option	Put Option
In the Money (ITM)	Underlying Price > Strike	Underlying Price < Strike
At the Money (ATM)	Underlying Price = Strike	Underlying Price = Strike
Out the Money (OTM)	Underlying Price < Strike	Underlying Price > Strike

- If the underlying price used is the spot price, then ATM is at-the money-spot etc
- If the underlying price used is the future price, then ATM is at-the money-future etc

Option Premium : Two Components

Intrinsic Value

Time Value

For Eg.,

If stock is at 100, and a Call option of strike 90 is priced at 12, then the price of the option can be broken down in 2 parts:

Call price =
$$(100-90) + 2$$

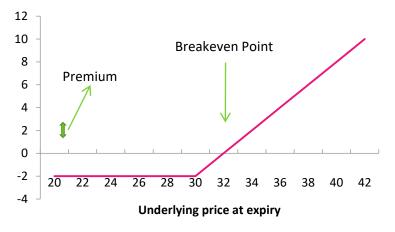
Intrinsic Value Time value

Intrinsic Value

 Intrinsic value is the current worth of the option that depends on the option strike price and the current stock price as shown below:

- For a call option, intrinsic value = stock price strike
- For a put option, intrinsic value = strike stock price
- Intrinsic value cannot be < zero
- More on Intrinsic value
 - An option with no intrinsic value is out-of-the-money
 - In the money options have intrinsic value

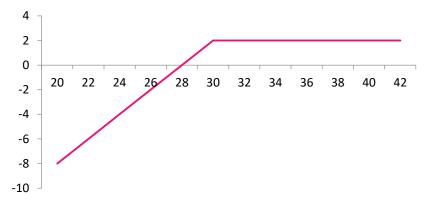
Time Value


 The chance or probability element in option premium. Even an option that is out-of-the-money (with zero intrinsic value) will have time value if it has any time remaining until expiry and assuming the share price can fluctuate. There is a chance that the option might move into the money before it expires.

Premium of an Option = Intrinsic Value + Time Value

Revisiting payoffs

Payoff - Buy Call Option


Payoff - Sell Call Option

Payoff - Buy Put Option

Payoff - Sell Put Option

Put-Call Parity

There is an important relation between call price, c, and put price, p.

Consider a portfolio A -

Portfolio A: One European call option of strike X plus an amount of cash X

What is the value of Portfolio A at expiry?

Scenario 1: The price of the stock at the end of the month is greater than X Portfolio A's value -> $(S_T-X) + X = S_{T-1}S_{T-1}$ the stock price at expiry

Scenario 2: The price of the stock at the end of the month is less than X Portfolio A's value -> 0 + X = X

Therefore, portfolio A is worth $max(S_T, X)$

Put-Call Parity

Consider a portfolio B –

Portfolio B: One European put option with strike X plus one share

What is the value of Portfolio B at expiry?

Scenario 1: The price of the stock at the end of the month is greater than X

Portfolio B's value -> $0 + S_T = S_T$

Scenario 2: The price of the stock at the end of the month is less than X

Portfolio B's value -> $(X-S_T) + S_T = X$

Therefore, portfolio B is also worth $max(S_T,X)$

Therefore, both portfolios should have identical values today. This means

$$c + Xe^{-rt} = p + S_o$$

where e^{-rt} is the discounting factor

