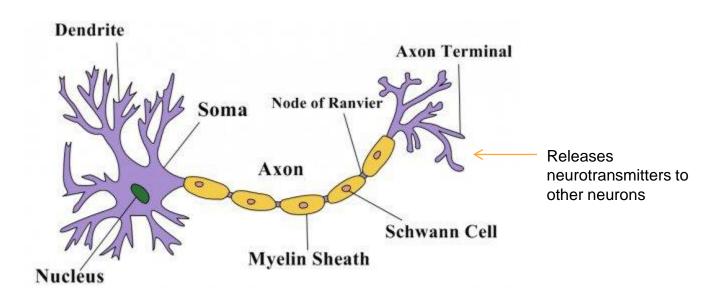
Neural Networks

Prof. Ankur Sinha Indian Institute of Management Ahmedabad Gujarat India

A typical Neuron

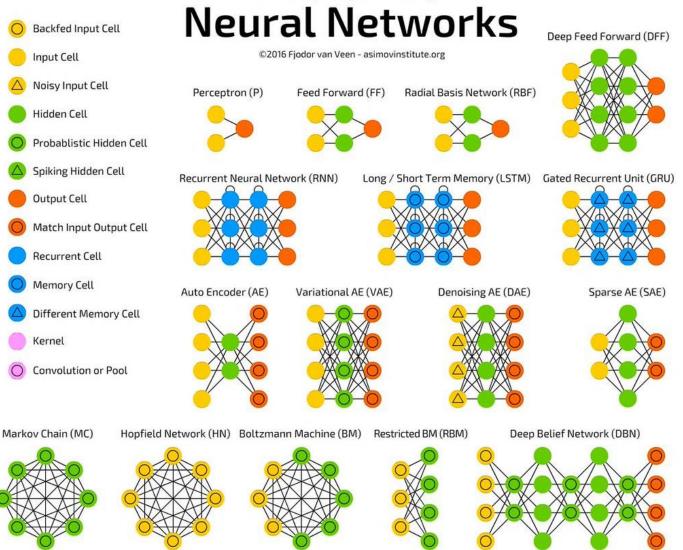


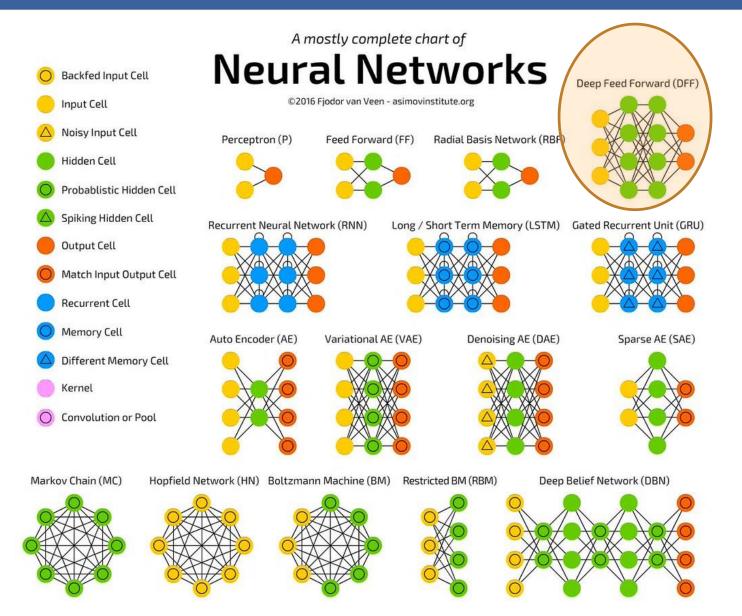
Information Flow

Applications

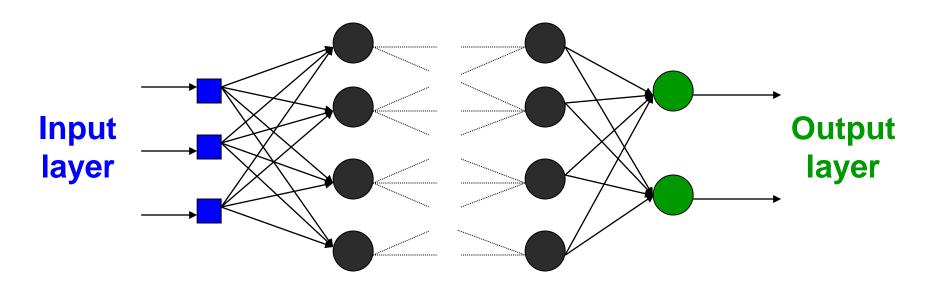
- Speech recognition
- Handwriting recognition
- Driverless Cars
- Products: Google translate, Alexa

A mostly complete chart of





MLP Architecture

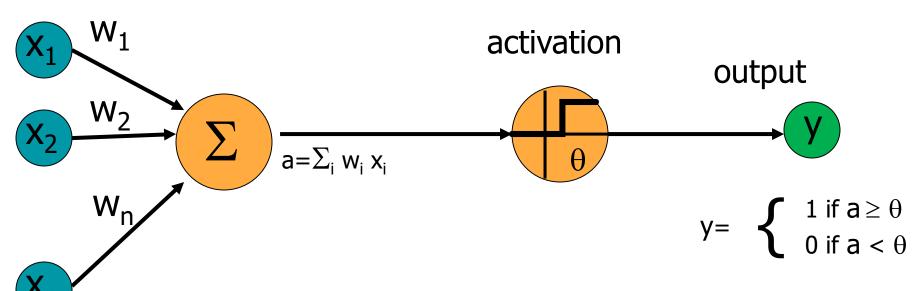


Hidden Layers

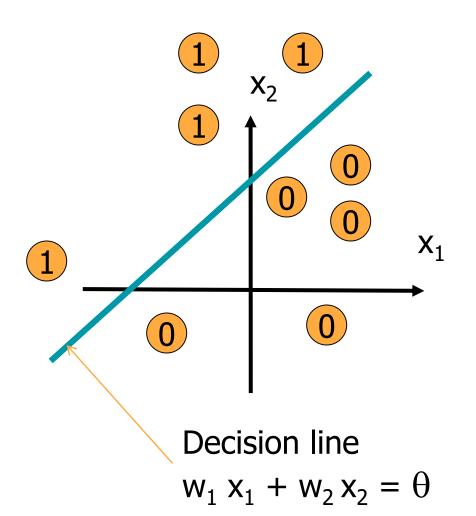
A Simple Architecture

A Threshold Logic Unit

inputs



Decision Surface of a TLU

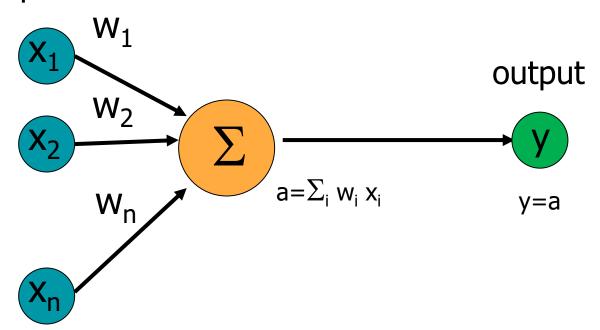


A TLU works as a linear classifier

Similar to SVM?

How do you identify the weights and threshold?

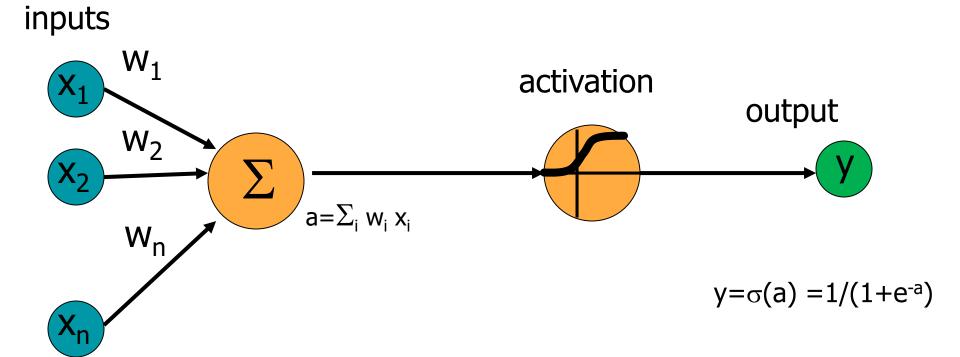
A Linear Unit



Tries to give the best linear relationship between input and output Similar to regression?

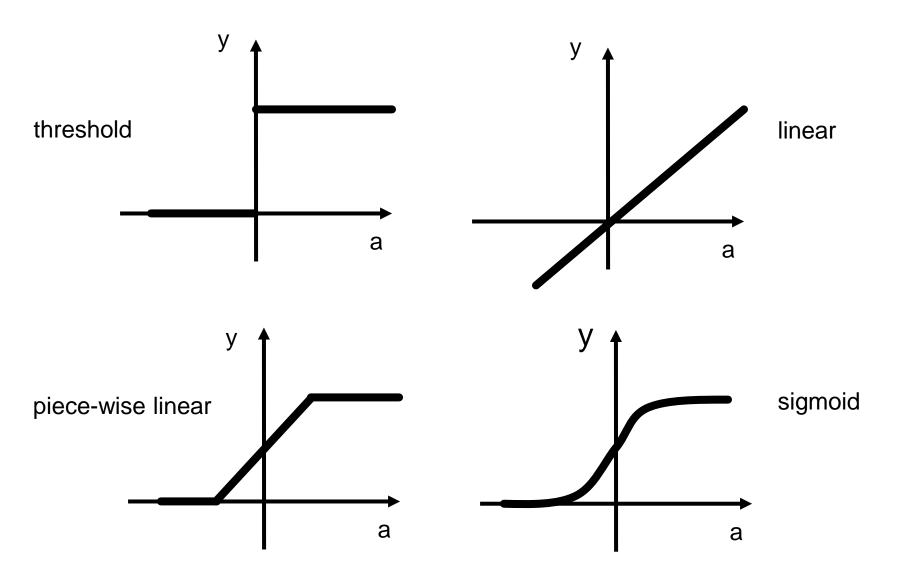
Neuron with Sigmoid Function

A Threshold Logic Unit

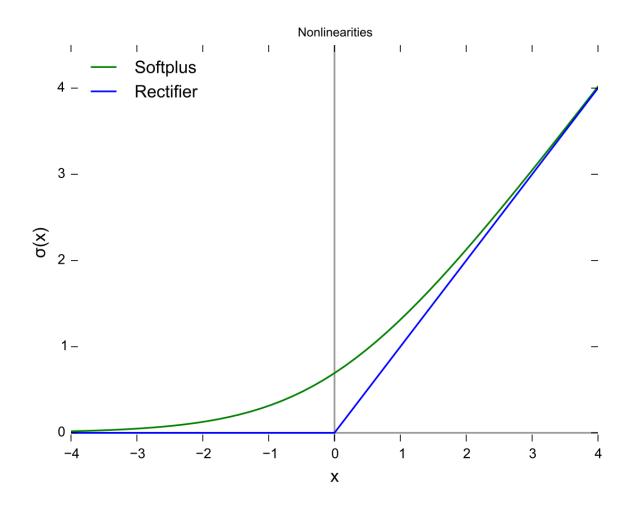


Gradient descent rules are used to learn the parameters of the NN

Types of Activation Functions



Types of Activation Functions



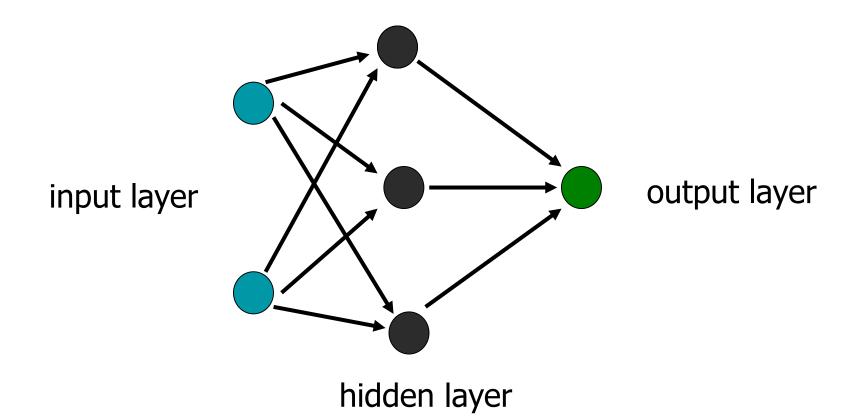
Training Neural Network

- A training set S of examples {x,t} is required
 - -x is an input vector
 - —t is the desired target vector
- Finding acceptable values of w and θ
 - –Assume some values for w and θ
 - -For the training example x, compute the network output y
 - —Compare output y with targets t, a difference denotes error
 - -Adjust w and θ so that the error can be reduced
 - -Accept w and θ that leads to minimum error

Backpropagation Algorithm

•Refer to the separate set of slides

Multiple Layers



Backpropagation approach is used to train the neural network

More about NN Parameters

- The weights of the neural network are determined by training data
- As more training data is obtained the weights should be updated

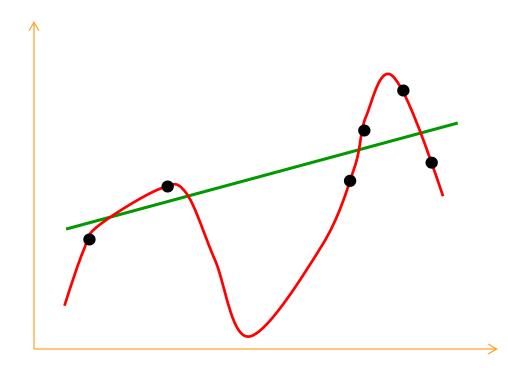
Neural Networks are Universal

- Any boolean function can be learnt by a neural network with single hidden layer
 - -It might require a large number of hidden units

- Any mathematical function that is continuous and bounded can be approximated to an arbitrarily small accuracy using a neural network with one hidden layer
 - A large number of hidden units might be required if the error of approximation is very small

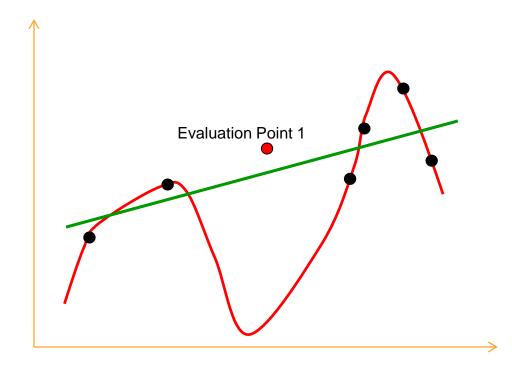
Be Careful!

- Neural network can easily lead to overfitting
- Try to minimize the generalization error than the training error



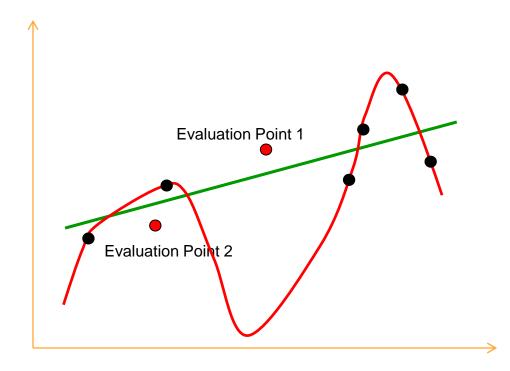
Be Careful!

- Neural network can easily lead to overfitting
- Try to minimize the generalization error than the training error



Be Careful!

- Neural network can easily lead to overfitting
- Try to minimize the generalization error than the training error



RNN, LSTM and CNN

- Recurrent Neural Networks (RNN)
 - —It is a generalization of the feedforward network
 - —It stores the output from the previous input and uses it along with the current input to produce the current output
 - -Useful for connected tasks such as handwriting and speech recognition
- Long Short Term Memory (LSTM)
 - —It is an extension of RNN and usually performs better as it has higher memory and resolves the vanishing gradient problem
 - Useful for classifying and predicting time series given time lags of unknown duration
- Convolutional Neural Network (CNN)
 - —It is a feed forward neural network that uses filters and pooling
 - —It is useful for handling images and spatial data, for instance, facial recognition, object detection, etc.

Text Data

- •I liked the service
- •It was horrible
- Waiting area was not so clean
- Wonderful experience

How do we vectorize the text?

Term Frequency

I liked the service

T .	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
1	0	0	0	1	0	0	0	1	0	0	0	0	1

It was horrible

T.	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
0	1	0	0	1	1	0	0	0	1	0	0	0	0

Waiting area was not so clean

1	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
0	0	1	0	0	1	1	0	0	0	1	1	1	0

Wonderful experience

I a	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
0	0	0	1	0	0	0	1	0	0	0	0	0	0

Unigrams (information loss)

Does not account for sequence

I liked the service

I .	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
1	0	0	0	1	0	0	0	1	0	0	0	0	1

It was horrible

I a	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
0	1	0	0	0	1	0	0	0	1	0	0	0	0

Waiting area was not so clean

1	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
0	0	1	0	0	1	1	0	0	0	1	1	1	0

Wonderful experience

I a	it	waiting	wonderf ul	liked	was	area	experien ce	the	horrible	not	so	clean	servic e
0	0	0	1	0	0	0	1	0	0	0	0	0	0

Unigrams (bigrams)

Some sequence is accounted

I liked the service

1	it	waiting	wonderf ul	liked	was	area	 l liked	like d the	the servic e	was horrible	not so	so clea n	
1	0	0	0	1	0	0	 1	1	1	0	0	0	•••
It was	horr	ible											

1	it	waiting	wonderf ul	liked	was	area	 l liked	like d the	the servic e	was horrible	not So	so clea n	
0	1	0	0	0	1	0	 0	0	0	1	0	0	

Waiting area was not so clean

I I	it	waiting	wonderf ul	liked	was	area	 l liked	like d the	the servic e	was horrible	not so	so clea n	
0	0	1	0	0	1	1	 0	0	0	0	1	1	

Wonderful experience

I	it	waiting	wonderf ul	liked	was	area	 l liked	like d the	the servic e	was horrible	not so	so clea n	
0	0	0	1	0	0	0	 0	0	0	0	0	0	

How much importance to give to stop words?

- Words like the, of, on that, at are stop words that can be filtered out
- Filtering may lead to loss of information
- •Can we do appropriate weighting?

Term frequency-Inverse Document Frequency

- Term-frequency is multiplied by a statistical weight called inverse document frequency
- Words that are present often in almost all text are often unimportant

Term frequency-Inverse Document Frequency

•Total number of documents/text: 1000,000

-Term of interest:

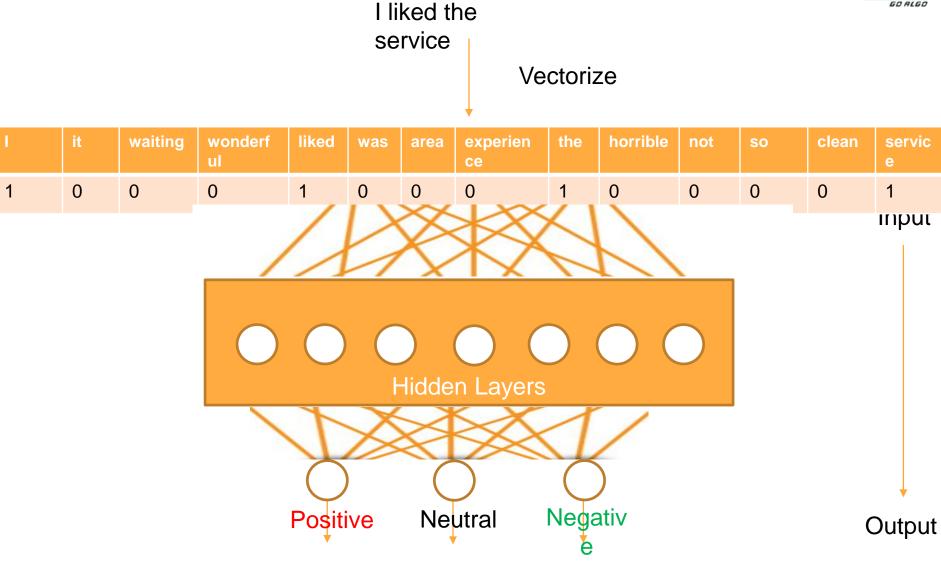
$000,000 \qquad w = \log \frac{1000,000}{1000,000} =$	0
C	000,000 $w = log \frac{1000,000}{1000,000} =$

person present in 10,000
$$w = log \frac{1000,000}{10,000} = 2$$

personal present in 1000
$$w = log \frac{1000,000}{1000} = 3$$

information present in 100
$$w = log \frac{1000,000}{100} = 4$$

These weights can be a measure of importance. The term frequency is multiplied by these weights to get tf-idf vector.



Each of the output nodes fires a 0 or 1 (or the probability)

Sentiment Analysis in Finance

Let us apply sentiment analysis to financial text

Dataset references:

Sinha, A., Kedas, S., Kumar, R., & Malo, P. (2022). SEntFiN 1.0: Entity-aware sentiment analysis for financial news. Journal of the Association for Information Science and Technology.

(https://www.kaggle.com/datasets/ankurzing/aspect-based-sentiment-analysis-for-financial-news)

Malo, P., Sinha, A., Korhonen, P., Wallenius, J., & Takala, P. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the Association for Information Science and Technology, 65(4), 782-796.

(https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news)