

Outline

Part I

Stationarity

Math behind ADF Test

ADF Test

Mean-reversal Strategy

Part II

Cointegration

Cointegration Test

Pairs Trading Strategy

Cointegration vs. Correlation

Pairs Selection

Risk Management

Types of Statistical Arbitrage Strategies

Directional trading

Dependent on single instrument.

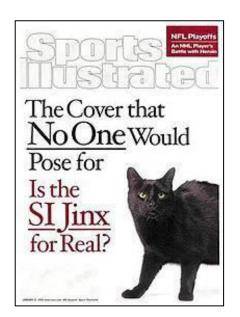
Example: Corn Futures, Gold Futures, etc.

• Pairs trading, triplets and other cointegrated trading

Relative value of 2, 3 or more instruments.

Example: Google vs. Facebook

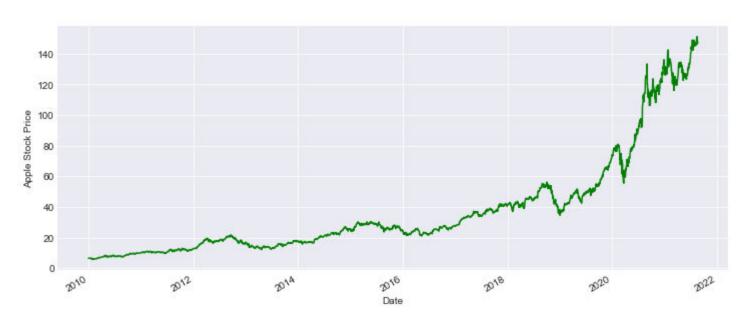
Statistical Arbitrage



Stationarity Analogy

Daniel Kahneman cited a famous example:

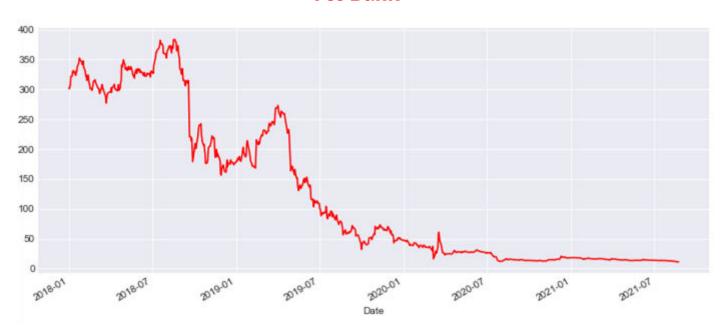
The "Sports Illustrated jinx," which is the claim that "an athlete whose picture appears on the cover of the magazine is highly probable to do badly in the upcoming season".



The magazine cover for the January 21, 2002 issue of *Sports Illustrated*

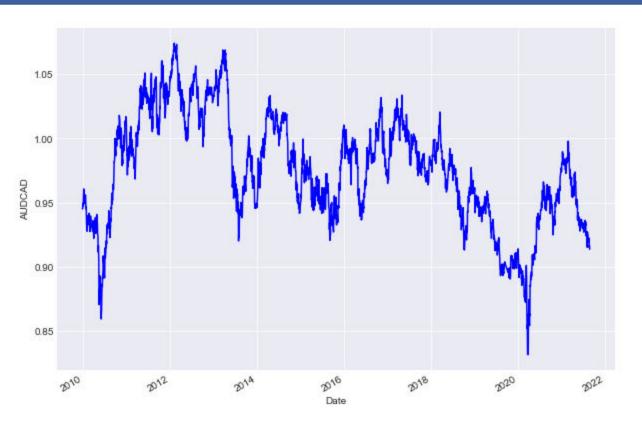
Is this stationary?

Apple Inc.



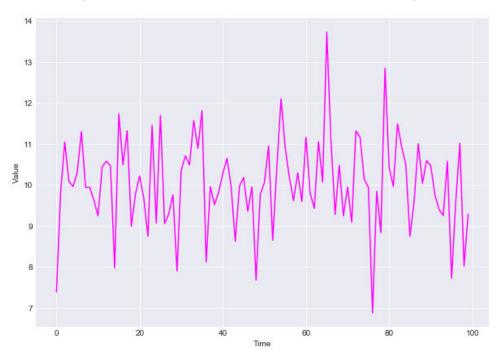
Source: Yahoo Finance

Is this stationary?


Yes Bank

Source: Yahoo Finance

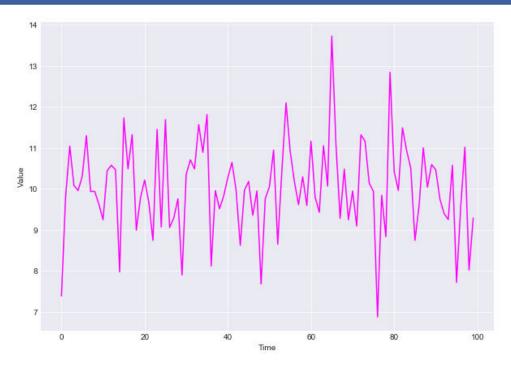
Is this stationary?



Source: Yahoo Finance

What is Stationarity?

A price series is stationary if it doesn't deviate much but stays around the mean.


Stationarity

- Random walk is not stationary
- It only applies to long term properties of a price series
- Life is not easy!
- It is difficult to find naturally occurring price series which are stationary

Which Strategy will Work on Stationary Time Series?

Statistical Arbitrage

© Scott Adams, Inc./Dist. by UFS, Inc.

Testing for Stationarity

- That's an intuitive definition, but how to check for this statistically?
- There is a convenient statistical test:
 - Augmented Dickey-Fuller (ADF) Test

Can't we just run a backtest on the trading strategy directly and be done with it? Why do we need a statistical test?

Stationarity Test: ADF (1 of 2)

We can describe the current price changes from the past price data using a linear model

$$\Delta p(t) = \lambda p(t-1) + \mu + \beta_t + \alpha_1 \Delta p(t-1) + ... + \alpha_k \Delta p(t-k) + \underline{\epsilon}t$$

$$p = price of the instrument$$

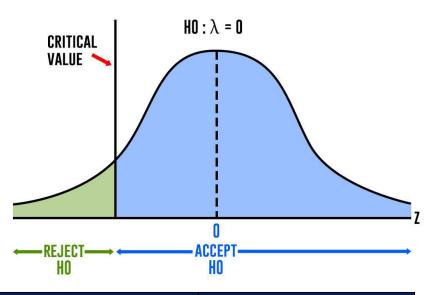
$$\Delta p(t) = p(t) - p(t-1),$$

$$\Delta p(t-1) = p(t-1) - p(t-2)$$
, and so on.

 λ = regression coefficient

•
$$H_0$$
: $\lambda = 0$ Not Stationary

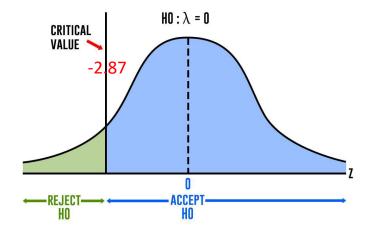
• Intuition:


If the hypothesis $\lambda = 0$ is rejected -

Next move $(\Delta p(t))$ --> Current level (p(t-1))

Hence, it is stationary.

Stationarity Test: ADF (2 of 2)



Probability	Critical Value
90%	-2.59
95%	-2.87
99%	-3.44

Stationarity Test: Quiz

- 1. Is t-stat value of -3.05 stationary with 95% confidence level (critical value: -2.87)?
 - Yes/No
- 2. Is t-stat value of -2.40 stationary with 95% confidence level (critical value: -2.87)?
 - Yes/No

Testing for Stationarity in Python (1 of 2)

Read in AUDCAD.csv file

data = pd.read_csv('file_name.csv', index_col=0)

Plot the time series

data.Close.plot(figsize=(8,4))

Check for Stationarity using adfuller method available in statsmodels.tsa.stattools
 package

help(adfuller)

Testing for Stationarity in Python (2 of 2)

Set maxlag = 1 (Assuming short-range serial correlation)

Perform ADF Test

adf = adfuller(data.Close, maxlag = 1)

(Advanced topic: To find optimal maxlag, use AIC/BIC.)

- Test statistic: adf[0]
- Conclusion:

Since t-stat < -2.59, AUDCAD is stationary with more than 90% certainty

Statistical Arbitrage

- Read data from CSV file
- Moving average and moving standard deviation
- Upper band and lower band
- Long positions
- Short positions
- Strategy PnL

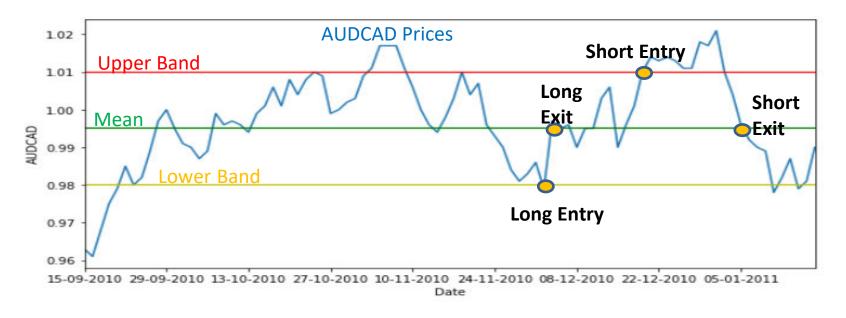
- Read data from CSV file
- Moving average and moving standard deviation

```
df['moving_average'] = df.Close.rolling(5).mean()
df['moving_std_dev'] = df.Close.rolling(5).std()
```

Upper band and lower band

```
df['upper_band'] = df.moving_average + 0.5*df.moving_std_dev
df['lower_band'] = df.moving_average - 0.5*df.moving_std_dev
```

How to select lookback period (5) and width of Bollinger bands (0.5)?


- 1. Optimize in training set
- 2. Set lookback to some multiple of half-life

https://github.com/QuantInsti/EPAT/blob/master/Statistical%20Arbitrage/optimization.py

https://github.com/QuantInsti/EPAT/blob/master/Statistical%20Arbitrage/half_life.py

Bollinger Bands: AUDCAD

Note: The straight line for mean, upper band and lower band is for illustration purpose only. In the strategy, rolling mean, rolling upper band and rolling lower band is used.

Data source: FXCM

Day	df.Close	df.moving_average	df.lower_band	df.long_entry	df.long_exit
1	98.5	99.5	98	FALSE	FALSE
2	97.5	99.5	98	TRUE	FALSE
3	98.2	99.5	98	FALSE	FALSE
4	99.2	99.5	98	FALSE	FALSE
5	99.6	99.5	98	FALSE	TRUE
6	100	99.5	98	FALSE	TRUE
7	99	99.5	98	FALSE	FALSE

Long Entry

df['long_entry'] = df.Close < df.lower_band

Long Exit

df['long_exit'] = df.Close >= df.moving_average

df.long_entry	df.long_exit	positions_long
FALSE	FALSE	NaN
TRUE	FALSE	1
FALSE	FALSE	NaN
FALSE	FALSE	NaN
FALSE	TRUE	0
FALSE	TRUE	0
FALSE	FALSE	NaN

Long Positions

```
df['positions_long'] = np.nan
df.loc[df.long_entry,'positions_long'] = 1
df.loc[df.long_exit,'positions_long'] = 0
```


df.long_entry	df.long_exit	positions_long	Forward Filled (positions_long)
FALSE	FALSE	NaN	NaN
TRUE	FALSE	1	1
FALSE	FALSE	NaN	1
FALSE	FALSE	NaN	1
FALSE	TRUE	0	0
FALSE	TRUE	0	0
FALSE	FALSE	NaN	0

Forward Fill NaN Values

Carry forward an existing position, whenever the next bar's position has not been predetermined to be 0 or 1

df.positions_long = df.positions_long.fillna(method='ffill')

Short Positions

```
df['short_entry'] = df.Close > df.upper_band

df['short_exit'] = df.Close <= df.moving_average

df['positions_short'] = np.nan

df.loc[df.short_entry,'positions_short'] = -1

df.loc[df.short_exit,'positions_short'] = 0</pre>
```

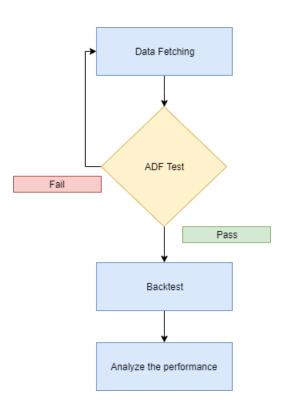
 Carry forward an existing position, whenever the next bar's position has not been predetermined to be 0 or -1

df.positions_short = df.positions_short.fillna(method='ffill')

Final Positions

df['positions'] = df.positions_long + df.positions_short

Pnl


```
df['prices_difference'] = df.Close - df.Close.shift(1)
df['pnl'] = df.positions.shift(1) * df.prices_difference
df['cumpnl'] = df.pnl.cumsum()
```

Returns

```
df['percentage_change'] = df.Close.pct_change()
df['strategy_returns'] = df.positions.shift(1) * df.percentage_change
df['cumulative_returns'] = (df.strategy_returns+1).cumprod()
```

Summary

Pairs Trading

Historical Background: Pairs Trading

- First developed and used in the mid 1980s by Nunzio Tartaglia's quantitative group at Morgan Stanley.
- Pair Trading is a "contrarian strategy" designed to harness mean-reverting behavior of cointegrated instruments.
 - Question: Why Contrarian?
- David Shaw, founder of D.E. Shaw & Co., left Morgan Stanley and started his own "Quant" trading firm in the late 1980's dealing mainly in pair trading.

Cointegration

- A portfolio of two or more instruments such that the portfolio is stationary. Then, the instruments in the portfolio are said to be cointegrated
- Mean Reversion Strategy
 - Buy the portfolio when its value is low
 - Sell the portfolio when its value is high

Pairs Trading

EWA: iShares MSCI Australia ETF

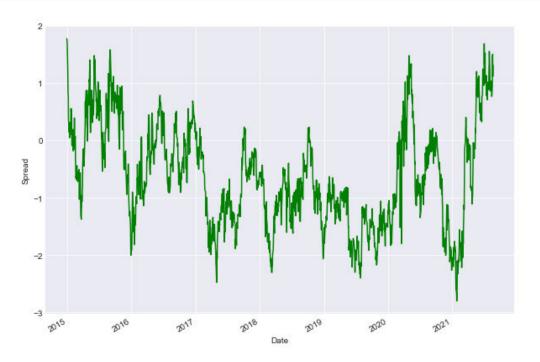
The iShares MSCI Australia ETF seeks to track the investment results of an index composed of Australian equities.

EWC: iShares MSCI Canada ETF

The iShares MSCI Canada ETF seeks to track the investment results of an index composed of Canadian equities

Source: https://www.ishares.com/us/products/239607/ishares-msci-australia-etf

Example of Prices of EWA and EWC



Data source: Yahoo finance

Example of Cointegrated Price Series

Spread = EWC – 1.45 * EWA Strategy – buy low and sell high!

Data source: Yahoo finance

Cointegration

- Any arbitrary combination of the instruments are not cointegrated
- Only some combinations of the instruments are cointegrated
- Linear regression to find the hedge ratio

```
import statsmodels.api as sm
model = sm.OLS(df.EWC.iloc[:90], df.EWA.iloc[:90])
model = model.fit()
print(model.params[0])
```

How to select the lookback period (90 days)?

Cointegration Test in Python

- Consider two ETFs as X (EWA) and Y (EWC)
 - Hedge Ratio: Linear Regression X and Y
 - Spread: Y Hedge Ratio*X
 - Stationarity Test (ADF test) on the spread
- Test statistic: adf[0]
- Conclusion:

Since t-stat < -2.56, EWA and EWC is cointegrated with more than 90% certainty

Mean Reversion Strategy

Compute

- Spread: Y Hedge Ratio * X
- Mean of the Spread
- Standard Deviation of the Spread
- Upper Band and Lower Band

Mean Reversion Strategy

Entry conditions

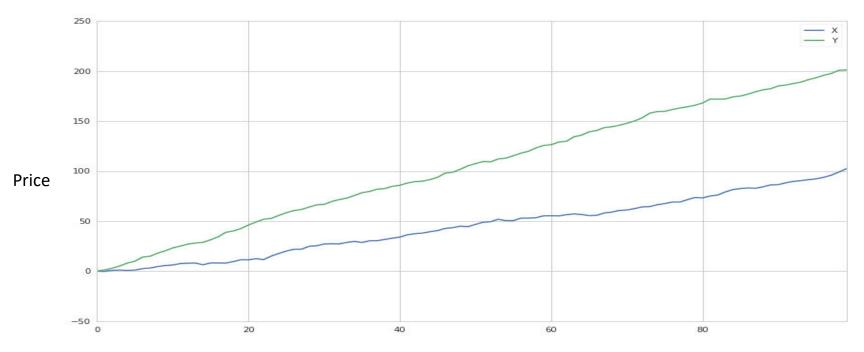
```
Long Entry:
If spread < lower band then
      buy 1 share of Y
     sell hedge ratio share of X
Short Entry:
If spread > upper band then
     sell 1 share of Y
      buy hedge ratio share of X
```

- Exit conditions
- PnL

Cointegration Vs. Correlation

Cointegration vs. Correlation

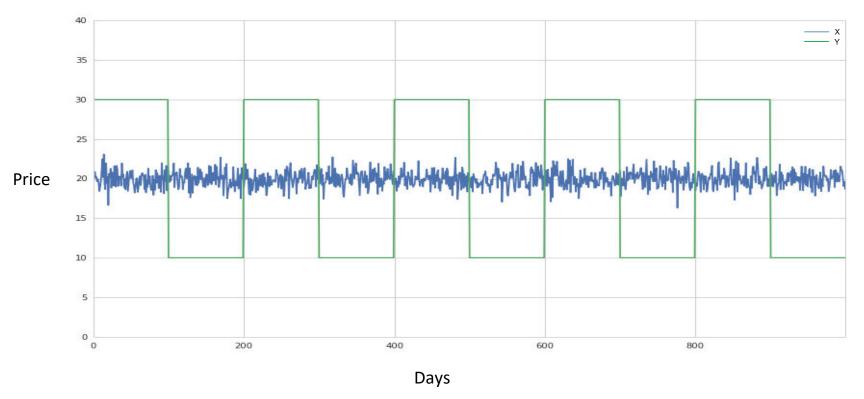
Cointegration


- It is whether the spread between two instruments is stationary
- Long-term

Correlation

- It is whether the two instruments returns move in same direction
- Short-term or long-term

Correlation without Cointegration



Days

Cointegrated without Correlation

Pairs Selection

Why Pair Trading Works?

- Cointegrated pair are assumed to be mean reverting in nature
- Once the spread diverges from its mean, the probability of reversal increases
- With the chosen pair from same industry and sector, extreme divergence from mean is rare

The Concept (1 of 2)

- Pair Selection Criteria
 - Qualitative Selection (ETFs & Currencies)
 - Exposed to common economic factors
 - Qualitative Selection (Stocks)
 - Same Sector
 - Similar Market Capitalization
 - Similar Ratios

Note: Many choices of pairs but easy to lose cointegration

Cointegration Check

ADF Test

The Concept (2 of 2)

- <u>Example 1:</u> Both (EWA) Australia and (EWC) Canada are dominated by commodities stocks
- Example 2: ACC and Ambuja

Criteria	ACC	Ambuja
Sector	Cement & Cement Products	Cement & Cement Products
Market Capitalization (In INR Cr.)	32,805	53,235
ROE (3 Years)	9.88%	8.74%

Risk Management

Case Study: LTCM

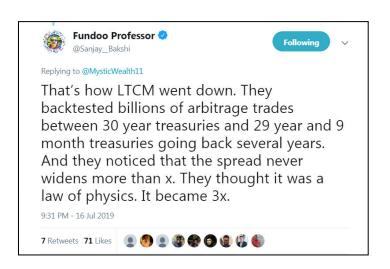
Risk Management

- Statistical Arbitrage is not a risk-free strategy
- Rather than converging, the spread can begin to diverge (drift apart)
 - The spread picks up trend rather than mean-reverting and the cointegration is broken
- An event in a security can trigger extreme movement in the spread

Strict risk management is required to handle adverse situations once the mean-reverting behavior is invalidated

Risk Management Ways

- Define strict stop-loss and profit mechanism before entering trade
- It's a good practice to allocate fund to different pair portfolio rather than one single trade
- Combine with momentum strategies


How to place the stop-loss in these strategies?

Case Study: LTCM

Recipe for disaster

- Overreliance on backtest
- High leverage

Summary

Summary

- ✓ Stationarity and Cointegration are important for profitable mean reversion strategy
- ✓ ADF Test is used to determine whether two price series is stationary/cointegrated or not
- ✓ Stock pairs are quite unstable w.r.t. cointegration
- ✓ ETFs and currency pair are good candidates for pair trading.

Further Readings

- Index arbitrage strategy
- Johansen test
- Common pitfalls in backtesting
- Half-life

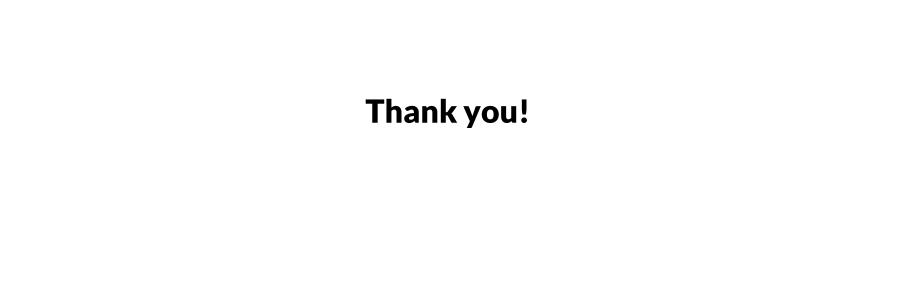
Bibliography & References

- Ernest P. Chan "Algorithmic trading winning strategies and their rationale"
- Gatev, Evan, William N. Goetzmann, and K. Geert Rouwenhorst, "Pairs Trading:
 Performance of a Relative-Value Arbitrage Rule," Review of Financial Studies (2006): 797-827
- Vidyamurthy, Ganapathy, Pairs Trading: Quantitative Methods and Analysis (New Jersey: John Wiley & Sons, Inc., 2004)
- Wooldridge, Jefferey M., Introductory Econometrics, A Modern Approach, Third Edition
 (Ohio: Thomson South-Western, 2006)
- Screener.in

Keep in Touch

- Email
- <u>LinkedIn</u>
- Quora

Additional Readings



- Half-life
 - https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1404905 https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process
- The Cointegration Alpha
 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=315619
- Statistical Arbitrage in the U.S. Equities Market
 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1153505
- Optimal Mean Reversion Trading with Transaction Costs and Stop-Loss Exit https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2222196
- Implementation of Pairs Trading Strategies
 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1594066
- Quantitative Spread Trading on Crude Oil and Refined Products Markets https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1932471
- Pairs Trading on International ETFs
 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1958546

Additional Readings

- Pairs Trading: Performance of a Relative Value Arbitrage Rule https://papers.ssrn.com/sol3/papers.cfm?abstract_id=227415
- Cointegration Trading with Log Prices vs. Prices
 https://www.jstor.org/stable/4480875?seq=1#page_scan_tab_contents
 http://epchan.blogspot.com/2013/11/cointegration-trading-with-log-prices.html
- Johansen Test in Python
 https://www.quantinsti.com/blog/johansen-test-cointegration-building-stationary-portfolio/
- A Simplified Approach to Understanding the Kalman Filter Technique https://papers.ssrn.com/sol3/papers.cfm?abstract_id=715301
- Application of Machine Learning Tools in Predictive Modeling of Pairs Trade in Indian Stock Market https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3159868

