

EFS02: Lecture Summary

Overview

- This lecture primarily focuses on building a strategy back-testing framework for basic quantitative and systematic ideas using spreadsheet software like Microsoft Excel.
- Excel is a quick and effective way to do hypothesis testing of a trading idea.
- We demonstrate the objective of the lecture using a breakout strategy based on ATR. Towards the end of the lecture, we covered how we can use data tables in Excel to optimize variables.

Excel Terminologies and Functions:

• <u>Cell Range:</u> A cell range is a combination of cells with one or more rows and columns. The range can be determined by using a colon (:) between cell references or by selecting the rows and columns manually. Refer to the examples below:

Date	Open	ı
2021-03-29	12950.5	
2021-03-30	12904.0	
2021-03-31	12970.3	
2021-04-01	13268.9	
2021-04-05	13434.0	
2021-04-06	13567.2	
2021-04-07	13553.9	
2021-04-08	13730.7	
2021-04-09	13709.7	
2021-04-12	13792.7	
2021-04-13	13874.6	
2021-04-14	13988.9	
2021-04-15	13934.9	
2021-04-16	14036.0	
2021-04-19	13970.8	
2021-04-20	13892.0	
2021-04-21	13768.9	
2021-04-22	13920.9	
2021-04-23	13794.5	
2021-04-26	13954.9	
2021-04-27	14048.1	
2021-04-28	13953.6	
2021-04-29	14063.9	
2021-04-30	13857.8	
	=B2:B25	

The above example shows a cell range with a single column and multiple rows.

Date	Open	High
2021-03-29	12950.5	13013.5
2021-03-30	12904.0	12929.5
2021-03-31	12970.3	13167.1
2021-04-01	13268.9	13333.4
2021-04-05	13434.0	13623.6
2021-04-06	13567.2	13660.3
2021-04-07	13553.9	13648.8
2021-04-08	13730.7	13763.2
2021-04-09	13709.7	13849.3
2021-04-12	13792.7	13839.4
2021-04-13	13874.6	14002.5
2021-04-14	13988.9	13990.5
2021-04-15	13934.9	14040.1
2021-04-16	14036.0	14050.4
2021-04-19	13970.8	14025.6
2021-04-20	13892.0	13934.9
2021-04-21	13768.9	13939.7
2021-04-22	13920.9	13954.0
2021-04-23	13794.5	13989.4
2021-04-26	13954.9	14039.4
2021-04-27	14048.1	14048.3
2021-04-28	13953.6	13992.1
2021-04-29	14063.9	14073.5
2021-04-30	13857.8	13969.2
	=b2:c22	

Here, we see an example of multiple columns and multiple rows cell range.

Date	Open
2021-03-29	12950.5
2021-03-30	12904.0
2021-03-31	12970.3
2021-04-01	13268.9
2021-04-05	13434.0
2021-04-06	13567.2
2021-04-07	13553.9
2021-04-08	13730.7
2021-04-09	13709.7
2021-04-12	13792.7
2021-04-13	13874.6
2021-04-14	13988.9
2021-04-15	13934.9
2021-04-16	14036.0
2021-04-19	13970.8
2021-04-20	13892.0
2021-04-21	13768.9
2021-04-22	13920.9
2021-04-23	13794.5
2021-04-26	13954.9
2021-04-27	14048.1
2021-04-28	13953.6
2021-04-29	14063.9
2021-04-30	13857.8
	328941.8 ×
	=SUM(B2:B25)

The above-mentioned snapshot shows how we can use a cell range in a function.

Functions:

<u>"AND":</u> It is a function under the logical category. If all the conditions satisfy to be TRUE, it returns TRUE else FALSE. Syntax:

=AND(Cond1,Cond2) returns TRUE or FALSE

<u>"OR":</u> It is a function under the logical category. If either of the conditions satisfies to be TRUE, it returns TRUE else FALSE. Syntax:

=OR(Cond1,Cond2) returns TRUE or FALSE

- <u>"SUM":</u> It is a function under the math category. It returns the sum total of all the values passed to it. It is defined as
- =SUM(Num1,Num2...) returns Num1+Num2+.... OR
- =SUM(Cell Range) returns Sum of all the cells in Cell Range
- <u>"COUNT":</u> It is a function under the math category. It returns the count of the values given as parameters. It is defined as
- =COUNT(Num1,Num2...) returns Count of Num1, Num2,....
- =COUNT(Cell Range) returns Count of all the cells in Cell Range
- <u>"IF":</u> It is a function under the Logical category. It takes logical condition/s and their respective outcomes. Based on the evaluation of the logical condition/s, the output is produced. Syntax:
- =IF(Cond,value_if_true,value_if_False) returns value_if_true or value_if_False
- "SUMIF": It is a function under the math category. It is defined as
- =SUMIF(Cell Range, condition) returns Sum of all the cell in Cell Range which meets the given criteria
- "COUNTIF": It is a function under the math category. It is defined as
- =COUNTIF(Cell Range, Criteria) returns Count of all the cells in Cell Range which meets the given criteria
- "INDEX": It is a function under the Lookup and reference category. It is defined as
- =INDEX(Cell) returns Content in the given cell
- =INDEX(Cell Range,row,column) returns Content in the cell(row,col)

Refer to the strategy in the lecture:

It is a break-out strategy with logic as:

- 1. Initiate a new buy trade if the price goes above 'x' candles high
- 2. Initiate a new sell trade if the price goes below 'y' candles low
- 3. Exit trade when:
 - a. Price goes against us by 'a' times ATR (Average True Range)
 - b. Price goes in our favour by 'b' times ATR (Average True Range)
- 4. Only take one position at a time. Ignore new signals if there is an ongoing trade.
- 5. Fixed position size of 1 'quantity'.
- 6. Average True Range(ATR) is calculated as shown below:

True Range (TR): MAX(H-L, H-PCC, PCC-L)

$$ATR(i) = ATR(i-1)*(n-1)+TR(i)$$
n

$$ATR(1) = Average of previous 'n' TRs$$

Where,

- PCC: Previous Candle Close

H: HighL: Low

We have historical data of the instrument as:

S No.	Date	OPEN	HIGH	LOW	LAST_PRICE
1	1/10/18 9:15	10599.8	10609.40	10598.0	10607.35
2	1/10/18 9:16	10607.3	10610.40	10601.70	10607.55
3	1/10/18 9:17	10607.5	10611.05	10598.50	10608.55
4	1/10/18 9:18	10609.0	10615.80	10606.98	10611.45
5	1/10/18 9:19	10611.50	10614.6	10603.6	10604.80
6	1/10/18 9:20	10604.90	10608.9	10601.9	10605.90
7	1/10/18 9:21	10606.15	10613.25	10597.50	10599.30
8	1/10/18 9:22	10599.88	10605.4	10594.3	10597.95
9	1/10/18 9:23	10598.40	10602.90	10589.25	10591.60
10	1/10/18 9:24	10591.8	10593.40	10586.98	10591.30
11	1/10/18 9:25	10591.1	10593.68	10584.0	10591.90
12	1/10/18 9:26	10591.60	10599.5	10586.25	10594.00

To develop the model, we require some parameters. These parameters will be used in the calculations of the strategy as follows:

- 1. Initiate a new buy trade if the price goes above 'x' candles high -- (Parameter 'x')
- 2. Initiate a new sell trade if the price goes below 'y' candles low -- (Parameter 'y')
- 3. Exit trade when:
 - a. Price goes against us by 'a' times ATR (Average True Range) -- (Parameter 'a')
 - b. Price goes in our favour by 'b' times ATR (Average True Range) -- (Parameter 'b')

В	С	D
Input Pa	rameters	
Buy Candles	c } 2	x
Sell Candles	3	У
Stop Loss (SL)	1	а
Take Profit (TP)	2	b
ATR (n)	20	n

- To develop the strategy, we need to calculate few columns as follows:
 - "x candle high"=MAX(INDEX(col_high_range,(sr_no-x),last_high_cell)

- "y candle low"=if(sr_no<=y,"",MIN(INDEX(col_low_range,(sr_no-y),last_low_cell))
- "TR"=MAX((last_high-last_low),(last_high-prev_close),(prev_close-last_low))
- ATR(1): Average of n TRs(Note: ATR(1) is the first value of ATR in the timeseries)
- ATR(n): (Prev_value_ATR*(n-1)+Curr_TR)/n
- "Signal": if(col high>"x candle high","buy", if("col low"<"y candle low","sell",""))
- Don't calculate the "Signal" if any of the base parameters are null.
- "Signal": if(OR("x candle high"="",

- "Signal Price": if("Signal"="Buy", "x candle high", if("Signal"="Sell","y candle low","")
- Possible Status of the trade are:
 - No Trade
 - o Buy Trade
 - o Sell Trade
 - o SL
 - O TP
- "Status": if(OR("Prev_Status"=""","Prev_Status"="SL","Prev_Status"="TP"),"Signal",
 if("Prev_Status"="Buy",if("Low"<"SL Price","SL",if("High">"TP
 Price","TP","Prev_Status")),if("Prev_Status"="Sell",if("High">"SL Price","TP",if("Low"<"TP
 Price","TP","Prev_Status"))
- "Entry Price": if("Status"="Prev_Status","Prev Entry
 Price",if(or(Status="Buy",Status="Sell"),"Signal_Prie","")
- "ATR Rep": if("Status"="Prev_Status","ATR Rep",if(or(Status="Buy",Status="Sell"),"ATR","")
- "P&L": if(AND("Prev Status"="buy", "Status"="SL"),

```
"SL Price"- "Entry Price",

If(AND("Prev_Status"="buy", "Status"="TP"),

"TP Price"- "Entry Price",

If(AND("Prev_Status"="sell", "Status"="TP"),

-"TP Price"+ "Entry Price",

If(AND("Prev_Status"="sell", "Status"="SL"),

-"SL Price"+ "Entry Price", ""))))
```